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AND ÉLISABETH GUAZZELLI3
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We present a prediction of the lateral force exerted on a rigid neutrally buoyant sphere
in circular cross-section Poiseuille flow. The force is calculated with the method of
matched asymptotic expansions. We investigate the influence of the pipe Reynolds
number in the range 1–2000 on the equilibrium position and the magnitude of
the lateral force. We show that the predicted lift force in a circular geometry is
qualitatively similar to, but quantitatively different from, that in a plane channel. The
predicted force in the pipe is significantly smaller than the channel result, and the
zero of the force which determines the equilibrium radial position of a suspended
particle lies closer to the centreline in the pipe.

1. Introduction
In 1962, Segré & Silberberg offered evidence of inertial migration of a rigid sphere

in pipe flow: they observed that rigid neutrally buoyant spheres in Poiseuille flow
migrated to an equilibrium position located at a radius of r ≈ 0.6R, with R the radius
of the pipe. The equilibrium position 0.6R was observed for Reynolds numbers
Re = 2RŪ/ν = O(1) and shifted to larger radius for larger Re. The Reynolds
number is defined using Ū as the average axial velocity and ν as the kinematic
viscosity. Recent experiments by Matas, Morris & Guazzelli (2004) confirmed that
the equilibrium position moves towards the wall of the pipe as Re increases. However,
a new observation was made: an additional equilibrium position was found at a
radius rinner ≈ 0.5R. The majority of the particles were found to lie on this inner
annulus for Re > 700.

The phenomenon of inertial particle migration impacts a range of applications,
including microfluidic flows. This is perhaps surprising, as the effect of inertia on
particle-laden flows has typically been studied in relatively large (centimetre scale)
pipes, and the typical cross-section dimensions below 100 μm could lead one to the
expectation that inertia is negligible. However, for low viscosity fluids such as water,
Re � 1 is easily obtained even in small channels. For particles which occupy a
significant fraction of the conduit cross-section, the resulting migration has been
exploited in microfluidic devices to focus and sort particles or cells (Di Carlo
et al. 2007). The present work addresses particles of vanishing size for analytical
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Figure 1. Basic parameters used in the description of pipe flow.

convenience, but the results will be shown to lead to the conclusion that finite size is
a key consideration.

The pioneering work of Segré & Silberberg (1962) prompted several theoretical
studies, based on concepts developed by Saffman (1965), which support the existence
of an equilibrium position (Ho & Leal 1974; Schonberg & Hinch 1989; Hogg
1994). More recently, Asmolov (1999) extended the matched asymptotic approach of
Schonberg & Hinch (1989) to higher Reynolds numbers (up to Re = 1500). He showed
that the equilibrium position of Segré & Silberberg (1962) was shifted progressively
towards the wall as Re increased but did not find a second equilibrium position.
The question raised by Matas et al. (2004) was whether this discrepancy between
theory and experiment with respect to the existence of the inner annulus is due to the
finite particle size (and hence the finiteness of the particle Reynolds number) in the
experiment or to the pipe geometry. All theories to date were investigated for a point
particle in plane Poiseuille flow. The small parameter in the asymptotic expansion is
ε =

√
Rp , where the particle Reynolds number is defined as Rp = (Re/2)(a/R)2 with

a the radius of the particle.
With the goal of clarifying the cause of the discrepancy between theory and

experimental observation in the problem of inertial migration, we examine the
predicted lateral force for a circular cross-section pipe. To do so, we have extended
the matched asymptotic expansion calculation, developed and previously applied for
a plane channel, to the cylindrical geometry. We begin by presenting the analysis
leading to a fourth-order differential equation for the sphere lateral velocity. Then we
discuss the lateral force obtained after these equations are integrated and compare
the particle equilibrium position predicted as a zero of this lateral force to the
experimental observations.

2. Method
The lateral force is obtained via the method of matched asymptotic expansion,

developed for the channel geometry by Schonberg & Hinch (1989), Hogg (1994) and
Asmolov (1999) and used to evaluate the lift force on a spherical rigid particle in
a plane Poiseuille flow. Here, the method is extended to pressure-driven flow in a
cylindrical geometry. The details of the method are presented in the references noted,
but we outline the ideas specific to the case considered here. The parabolic flow is
disturbed by a neutrally buoyant rigid sphere of radius a located at a distance rp

from the pipe axis (see figure 1). The method assumes the particle-scale inertia is
small, Rp � 1, and thus the flow near the suspended sphere (in the ‘inner region’) is
given at leading order by a Stokes flow solution. Far from the particle, in the ‘outer
region’ at a distance of O(aR−1/2

p ), a balance of advection and diffusion requires
consideration of the Oseen equations. The boundary conditions associated with the
specific geometry considered must be accounted for by enforcing noslip at the pipe
boundary in the present calculation. The inner solution is needed only at leading
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order for the matching with the outer solution, and the particle is thus represented by
its leading-order force moment, which for the force- and torque-free sphere considered
here is the flow due to a stresslet (symmetric force dipole). We do not consider here
the case of a dense particle for which the leading-order solution is the point force
solution or Stokeslet. This case has been treated for the channel geometry (Hogg
1994; Asmolov 1999).

We begin by considering a Cartesian coordinate system fixed on the particle and
develop the matched asymptotic problem in this frame. We then convert to the more
natural cylindrical coordinates with origin at the centreline to solve the problem. The
origin of the coordinate system is first taken at the centre of the sphere, thus moving
with it, and the axes are oriented as shown in figure 1. We denote as Up the slip
velocity of the particle relative to the fluid, Um the maximum velocity at the pipe
centre and vf the value of the unperturbed fluid velocity in a frame moving with the
unperturbed fluid at the centre of the particle.

We introduce u as the perturbation velocity field induced by the particle on the
fluid velocity. This perturbation velocity is the solution of the system

Rp

α
(u · ∇u + vf ∇u + u · ∇vf − Up · ∇u) = −∇p + ∇2u, (2.1)

∇ · u = 0, (2.2)

u = Up + (a/2R)�p × r − vf at r = 1, (2.3)

u = 0 on the pipe wall, (2.4)

u → 0 for |x| → ∞, (2.5)

where the position r is made dimensionless by a, velocities by Um and the angular
velocity �p by Um/2R. We denote α = a/2R as the ratio of particle size to pipe
diameter. Both Rp = (2Re)α2 and α are assumed to be small. In contrast, the pipe
Reynolds number Re is of the order of unity or larger.

In the matched asymptotic expansion theory, two regions of the flow are considered.
In the inner region close to the particle, the length scale is the particle radius a: in
the limit of small Rp , the leading-order governing equations reduce to the Stokes
equations. We consider a neutrally buoyant particle, for which the leading-order
inner solution is the stresslet velocity field corresponding to viscous flow driven by a
symmetric force dipole (see Schonberg & Hinch 1989; Asmolov 1999). In the outer
region far from the particle, we must consider Oseen equations in which advection
terms balance viscous terms. In this region, the new length scale is related to the
inner length scale by a factor ε: (X, Y, Z) = ε(x, y, z). The stretching factor must be
chosen so that inertial terms balance viscous terms in the equation for the velocity
perturbation u; so ε = R1/2

p (Hogg 1994; Asmolov 1999).
In the outer region, we choose to express the fluid velocity in the frame (X, Y, Z)

moving with the fluid velocity at the particle centre with

VX = (ε/α)vf · x̂ = γZ − 2
√

2Re−1/2(Y 2 + Z2),

where γ = 4rp/R is the dimensionless shear rate at the particle centre. The equation
for the velocity perturbation u now becomes[

VX

∂u
∂X

+

(
uy

dVX

dY
+ uz

dVX

dZ

)
x̂

]

= −ε−1∇p + ∇2u − 10

3
πγαε2

[
∂δ(R)

∂X
ẑ +

∂δ(R)

∂Z
x̂

]
. (2.6)
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where δ(R) refers to the delta function at the location R = (X, Y, Z), which appears
in a form resulting from the stresslet forcing (Hogg 1994; Asmolov 1999).

The forcing term sets the scaling of velocity and pressure: u ∼ αε2 ∼ ε3 and
p ∼ ε4. We therefore introduce U = ε−3u and P = ε−4p. We will also use the the
velocity components (U, V, W ) of U . We now change coordinates and move to a
frame (X′, Y ′, Z′) with its origin on the pipe axis, such that X′ = X, Y ′ = Y and
Z′ = Z − Zp , where Zp = (rp/

√
2R)Re1/2 is the distance from the particle to the

cylinder axis in the outer region units. Fluid velocity in this frame is simply

VX =
[(

r2
p/R2

)
(2Re)1/2 − 2

√
2R′2/Re1/2

]
, (2.7)

where R′ =
√

Y ′2 + Z′2 is the distance to the pipe axis. In particular, velocity is zero
at the particle position: VX[R′ = (rp/R)(

√
2/2)Re1/2] = 0. Taking the divergence of

(2.6) gives an expression for the Laplacian of pressure:

∇2P = −2

(
∂V

∂X′
∂VX

∂Y ′ +
∂W

∂X′
∂VX

∂Z′

)
− 20

3

πγ

(2Re)1/2
∂2

∂X′∂Z′ δ(R′ − Zp ẑ). (2.8)

With this expression, pressure can be eliminated from (2.6), yielding an equation for
velocity only:

∇2

(
VX

∂W

∂X′

)
= 2

∂

∂Z′

(
∂V

∂X′
∂VX

∂Y ′ +
∂W

∂X′
∂VX

∂Z′

)
+ ∇2(∇2W )

− 10

3

πγ

(2Re)1/2

∂

∂X′

[
∇2δ(R′ − Zp ẑ) − 2

∂2

∂Z′2 δ(R′ − Zp ẑ)

]
. (2.9)

We next take the Fourier transform of the previous equation along the X direction.
Lateral velocity is then expressed as

W̃ =
1

2π

∫ +∞

−∞
We−ikxX

′
dX′, (2.10)

and (2.9) can be written

ikx

(
∂2

∂Y ′2 +
∂2

∂Z′2 − k2
x

)
VXW̃ = 2ikx

∂

∂Z′

(
Ṽ

∂VX

∂Y ′ + W̃
∂VX

∂Z′

)
+ ∇2(∇2W̃ )

− ikx

5

3

γ

(2Re)1/2

[
∇2δ̃(R′ − Zp ẑ) − 2

∂2

∂Z′2 δ̃(R′ − Zp ẑ)

]
. (2.11)

We now change variables and replace variables (Y ′, Z′) by polar coordinates (r, θ)
as shown in figure 2: {

r2 = Y ′2 + Z′2,

tan θ = Y ′/Z′.

The lateral velocity W̃ is then expanded in a Fourier series:

W̃ (r, θ, kx) =
∑

m

˜̃W (r, m, kx)e
imθ .

In the rest of the analysis the double tilde will be omitted to simplify notation. The
aim of the calculation is to express the lateral velocity W (r, θ, X) at the particle
location, i.e. for θ = 0. Therefore we can drop all the terms proportional to sin θ in
the Fourier expansion of (2.11).
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Figure 2. Coordinate systems used in the analysis.

The left-hand term of (2.11) can now be written

ikx∇2(VXW ) = ikx

[
∂2

r +
1

r
∂r −

(
k2

x +
m2

r2

)]
(VXW ).

The first term on the right-hand side of (2.11) becomes

2ikx

∂

∂Z′

(
Ṽ

∂VX

∂Y ′ + W̃
∂VX

∂Z′

)
= 2ikx∂r (W̃∂rVX).

The operator ∇4 has to be expressed in cylindrical coordinates:

∇4 = ∂4
r +

2

r
∂3

r −
[

1

r2
+ 2

(
k2

x +
m2

r2

)]
∂2

r +

[
1

r3
+

4m

r3
− 2

r

(
k2

x +
m2

r2

)]
∂r

+

[
−4m2

r2
+

(
k2

x +
m2

r2

)2
]

. (2.12)

When the foregoing is inserted into (2.11), we obtain the following differential
equation in r for the lateral velocity W (r, m, kx):

∂4
r W +

2

r
∂3

r W −
[

1

r2
+ 2

(
k2

x +
m2

r2

)
+ ikxVX(r)

]
∂2

r W

+

[
1

r3
+

4m

r3
− 2

r

(
k2

x +
m2

r2

)
− ikx

VX(r)

r

]
∂rW

+

[
−4m2

r2
+

(
k2

x +
m2

r2

)2

+ ikx

(
∂2

r VX(r) − 1

r
∂rVX(r) +

(
k2

x +
m2

r2

)
VX(r)

)]
W

= ikx

5

6

γ

π(2Re)1/2
1

rp

[
∂2

r δ +
3

rp

∂rδ +

(
3

r2
p

+ k2
x +

m2

r2

)
δ

]
, (2.13)

where the δ function is applied at the particle location. Boundary conditions at the
nearest wall are

W (r = (2Re)1/2/2, m, kx) = 0,

∂rW (r = (2Re)1/2/2, m, kx) = 0.

The condition ∂rW = 0 can be derived from mass conservation. A complementary set
of conditions of the same form is taken on the other side of the particle: for m �= 0
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the conditions are applied at the centreline, while for m = 0 it is necessary to apply
them at the opposite wall.

The forcing terms on the right-hand side of (2.13) are derived from the inner
solution and its derivatives: following Saffman (1965), we consider them equivalent to
discontinuities in the derivatives of the lateral velocity W . We denote respectively as
	1, 	2 and 	3 the jumps in the first, second and third derivatives of W . The lateral
velocity and its jumps are then inserted into the left-hand side of (2.13), which yields

∇4W + 2ikx∂r (W∂rVX) − ikx∇2 (VXW ) = regular terms

+ 	1∂
2
r δ +

(
	2 +

2	1

rp

)
∂rδ +

(
	3 + 2

	2

rp

+
	1

r2
p

− 2

(
k2

x +
m2

r2
p

)
	1

)
δ.

Identification with the right-hand side of (2.13) finally gives⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

	1 = ikx

5

6

γ

π(2Re)1/2
1

rp

,

	2 =
	1

rp

,

	3 = 3

(
k2

x +
m2

r2

)
	1.

(2.14)

For fixed kx and m, differential equation (2.13) is then integrated from the wall to
the particle and from the centreline to the particle with a Runge–Kutta algorithm.
The orthonormalization method used by Asmolov (1999) is employed to ensure a
correct computation of the four independent solutions. (The method is detailed in
the Appendix of Asmolov 1999.) The solutions found on each side are eventually
connected across the particle via the discontinuities 	i given by (2.14), and the lateral
velocity W (rp, m, kx) is obtained. This velocity is integrated over m and kx , to get the
lateral velocity in real space W (rp, θ = 0, X′ = 0). The radially directed lift (or lateral)
force is then just the Stokes drag F = 6πηaW associated to this lateral velocity.

3. Results and conclusions
Figure 3(a) shows the lateral force F as a function of radial position for 1 �

Re � 1750. The magnitude of the lateral force is scaled by ηUmaRe−1/2ε3. There is
an important change in the shape of the curve as Re is increased: the curve flattens
and develops a local minimum around 0.5R, but no additional zero in the lateral
force is found. We also note that the zero of the force is shifted towards the wall, in
agreement with experimental observations and the channel flow predictions.

Figure 3(b–d ) compares the predictions for pipe flow to those for channel flow
(Asmolov 1999) for specific Reynolds numbers. Note that the particle location labelled
r/R implies 2z/l for the channel geometry, where z is the distance from the centreline
and l is the channel width. The magnitude of the lateral force is clearly smaller for the
pipe calculation. For instance the maximum outward value for Re = 30 in figure 3(b),
reached in both geometries around r/R = 0.4, is close to 2.9 in the planar case and
1.0 in the cylindrical case. The other significant difference is that the shift of the zero
in lateral force towards the wall is smaller for the pipe calculation. This difference can
be seen in figure 4, which shows the prediction for the equilibrium position in channel
and pipe geometries in comparison with experimental data. The prediction from the
present calculation appears to be in better agreement with experimental data. While
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Figure 3. Lateral force: (a) pipe flow at various Re and comparison with channel cases for
(b) Re = 30, (c) = 200 and (d ) = 1000.
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Figure 4. Comparison of the predicted equilibrium position for pipe (solid line) and channel
(dotted line) theories with experimental data of Matas et al. (2004).

the curve from the channel calculation was uniformly above the experimental data, the
curve from the pipe calculation passes among the data for smaller particles (large R/a).

There are two additional key findings in this work. The first is that the computed
magnitude of the force decreases strongly with Re for either geometry and has
importantly been found to be substantially smaller in the pipe geometry. This has
consequences for the predicted entry length Le of the inertial migration phenomenon.
The asymptotic scaling for vanishing Rp (Matas et al. 2004) is given by Le/D ≈
6πA−1Re−1(R/a)3, where A is the typical magnitude (taken as the maximum of the
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Figure 5. Variation of the scaled force amplitude A with Re. The line represents the best
power law fit of the data for 50 � Re � 1750.

outward force) of the scaled lateral force FRe1/2ε−3/(ηUma). This scaling is poor as
Re becomes large, because A decreases strongly as evidenced in figure 3(a). For the
pipe, a power law fit of A yields A ∼ Re−0.84 for 50 � Re � 1750 as shown in
figure 5. This decrease nearly compensates the Re−1 dependence of the entry length
scaling given above. Note, however, that for small Re, A tends to a constant value
in agreement with the small Re theory, and hence Le ∼ Re−1 as seen in Segré &
Silberberg (1962). A further conclusion regarding the smaller amplitude in the pipe
geometry is that it rationalizes the observation of Matas et al. (2004) that the large-Re

channel-geometry theory seriously underestimates the observed entry length.
The second valuable finding is that there is, in fact, no new zero of the lateral force

in the pipe geometry. This implies that the observation of an apparent bifurcation
in the equilibrium position, with the appearance of an inner annulus in addition to
the Segré–Silberberg equilibrium position, is most likely due to finite-size effects. An
asymptotic analysis based on a point-particle representation, as performed here, is
not able to capture this phenomenon. While the influence of finite-size effects on lift
force in shear flows has been examined previously in numerical studies (Kurose &
Komori 1999; Bagchi & Balachandar 2002), these are for cases in which the particle
experiences finite force and torque. More closely related to the present study are
recent numerical simulations (Shao, Yu & Sun 2008) of inertial migration of neutrally
buoyant spherical particles in a periodic pipe flow, which find an inner annulus for
elevated Re. These simulations use the fictitious domain method and were validated
against small-Re migration problems (Yu & Shao 2007). Other numerical simulations
using the lattice Boltzmann technique also find new equilibrium positions but are
performed for a square conduit (Chun & Ladd 2006). The fact that we do not find
a second zero of the lateral force, while the numerical simulation (Shao, Yu & Sun
2008) does indeed find a distribution of particles to an inner annulus, appears to
confirm finite size as the basis for this phenomenon.

To summarize, we have applied a known technique based on matched asymptotic
solutions to study inertial migration in the cylindrical geometry. By considering this
geometry, we have filled a gap in the theoretical understanding of the problem.
Relative to the results of the previous channel-flow theory, the new results for the
cylindrical geometry are in better agreement with experimental observations (Matas
et al. 2004) at elevated Reynolds numbers. In particular, the location of the zero
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in force at finite radius in the pipe calculations lies closer to the centreline, and
the magnitude of the lateral force is substantially smaller than the channel flow
calculation predicts. The latter result rationalizes the observation of a longer entry
length than predicted by the channel flow. The finding of only a single zero suggests
that the second region of particle accumulation, at an inner annulus lying closer to
the centreline, is a result of the finite size of the suspended particle.
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Matas, J.-P., Morris, J. F & Guazzelli, É. 2004 Inertial migration of rigid spherical particles in
Poiseuille flow. J. Fluid Mech. 515, 171–195.

Saffman, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385–400.

Schonberg, J. A. & Hinch, E. J. 1989 Inertial migration of a sphere in Poiseuille flow. J. Fluid
Mech. 203. 517–524.
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